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ABSTRACT 

 

The duffing equation is ẍ + δẋ + (νx3 ± ρx) = γcos(ωt) is a non -linear second order differential equation. In 

this paper my aim is to solve for boundedness and time period of the duffing equation (undamped (δ = 0) and 

unforced / undriven (γ = 0)) by Jacobi elliptic functions cn and nc, nd, cd and dc and sn. Also I expressed the 

identities, the properties and graphs using MATLAB program of three Jacobi elliptic functions. I observed the 

three special cases solve for boundedness and time period. They are Case A : solve Cubic ν ≠ 0 

(specialcase(ρ = ν = 1)), Case B : Solve Initial Value Problem for Cubic duffing equation with Special Cases 

for boundedness and time period which cannot be solved by cosine function. So, it can be solved in the form of 

x(t) = x0φ(ω0t,m0) in terms of Jacobi elliptic functions cn and nc, dc and cd, nd having positive frequency ω0 

and modulus m0 in the interval [0, 1]. Case C : Solve Initial Value Problem for Linear (ν = 0). Also for practical 

and research purposes I introduced the graphs of velocity and acceleration of duffing equation (undamped (δ =

0) and unforced / undriven (γ = 0)) using MATLAB.  

 

Keywords : Duffing Equation, Undamped And Unforced, Oscillators, Jacobi Elliptic Functions, Time Period, 

Boundedness 

 

I. INTRODUCTION 

 

The concept of Duffing equation was named after 

Georg Duffing (1861 – 1944) which is a non -linear 

second order differential equation in the case of 

damped (δ ≠ 0)and driven (γ ≠ 0) equation.  

 

The duffing equation is of the form  

 

ẍ + δẋ + (νx3 ± ρx) = γ cos(ωt)                  (1.1) 

where x(t) = displacement at time t 

 ẋ = 
d

dt
(x(t)) = velocity 

and ẍ = 
d2

dt2
(x(t)) = acceleration. 

 

The numbers δ, ρ, ν, γ,ω are parameters.  

 

Note that the motion of a damped (δ ≠ 0)  and 

unforced / undriven (γ = 0) oscillator has more 

complex potential than Simple harmonic motion. 

 

A. Parameters 

 

The parameters of equation (1.1) are  

 

• δ depends on the amount of damping 

• ρ depends on the linear case 

• ν depends on the non-linear case  

• γ is the amplitude of the periodic driving force  

• ω is the angular frequency of the periodic driving 

force 
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B. Equilibrium Points 

 

The force provided for the non-linear case is  

νx3 + ρx    (1.2) 

Case – I 

If ρ > 0 and ν > 0 then (1.2) is called a hardening  

spring and the equilibrium point is at x = 0 

Case – II  

If ρ > 0  and ν < 0  then (1.2) is called a softening 

spring  and the equilibrium points are at x = ±√
ρ

ν
 

Case - III 

If ρ < 0and ν > 0 then (1.2) is also called a softening  

 spring and the equilibrium points are at x = ±√−
ρ

ν
  

 

C. Methods of Solution 

Many approximate solutions for the duffing equation 

are  

• By Fourier series method. 

• By Frobenius method which yields a complex 

solution. 

• By Euler’s method and Runge-Kutta methods in 

numerical analysis. 

• By Homotopy analysis method which yields 

approximate solutions of the duffing equation. 

• By Jacobi Elliptic functions to obtain the exact 

solutions of the undamped (𝛿 = 0) and undriven 

(𝛾 = 0) duffing equation. 

 

II. UNDAMPED (𝜹 = 𝟎) AND UNFORCED (𝜸 = 𝟎) 

DUFFING EQUATION BY JACOBI ELLIPTIC 

FUNCTIONS 

 

The duffing equation is  

 

�̈� + 𝛿�̇� + (𝜈𝑥3 ± 𝜌𝑥) = 𝛾𝑐𝑜𝑠(𝜔𝑡)        (2.1) 

 

In this paper, my aim is to solve for boundedness and 

its time period of the duffing equation (undamped 

(𝛿 = 0) and unforced / undriven (𝛾 = 0)) by Jacobi 

elliptic functions cn and nc, dn and nd, cd and dc, sn. 

(see [2, 5-8, 11]) 

 

Also I expressed the identities, the properties and 

graphs using MATLAB program of Jacobi elliptic 

functions. (see [1]) 

 

By taking the plus sign in (2.1) becomes  

 

�̈� + 𝜈𝑥3 + 𝜌𝑥 = 0     (2.2) 

 

In this paper there are three special cases to solve for 

boundedness and time period. These are  

 

(i) For cubic case (𝜈 ≠ 0) (special case (𝜈 = 1 = 𝜌))  

without initial conditions 

(ii) For cubic case (𝜈 ≠ 0) with initial conditions 

(iii) For linear case (𝜈 = 0) with initial conditions 

 

A. Properties of Jacobi Elliptic Functions 

 

(i) Jacobi elliptic functions are 𝑠𝑛(𝑡,  𝑚) =

𝑠𝑖𝑛𝜃, 𝑐𝑛(𝑡,  𝑚)𝑐𝑜𝑠𝜃, 𝑑𝑛(𝑡,  𝑚) =  √1 −𝑚2 𝑠𝑖𝑛2 𝜃  

where 𝑚 ∈ (0,  1)  is called elliptic modulus, 

𝑡 =  ∫
𝑑𝜙

√1−𝑚2 𝑠𝑖𝑛2𝜙

𝜃

0
 is the time period and 𝜃 =

𝑎𝑚(𝑡,  𝑚) is called Jacobi amplitude. 

(ii) Jacobi elliptic functions are derivable 

(iii) Graphs using MATLAB (see [1]) 

 

Program :  

>> m = 0.5; 

>> t = -5 : 0.1 : 5; 

>> [s, c, d] = ellipj(t, m); 

 

>> plot(t, s, '*', t, c, '^', t,  

 d, '.') 

>> axis([-5 5 -1.1 1.1]) 

>> legend('sn', 'cn', 'dn') 

>> xlabel('Time (t)') 

>> ylabel('Elliptic Modulus (m)') 

http://www.ijsrst.com/
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>> title('Graph of Jacobi  

 Elliptic Functions') 

 

Graph : 

 

 
 

(iv) sn and cn are periodic functions period of sn = 

4K(
1

4
)  = 4K(m), m = 

1

4
 period of cn = 4K(

1

4
)  = 

4K(m), m = 
1

4
  

where K = K(m) = K(
1

4
) ≈ 1.5962422 

 

B. Identities of Jacobi Elliptic Functions 

 

• 𝑠𝑛2(𝑡,𝑚) + 𝑐𝑛2(𝑡,𝑚) = 1 

• 𝑑𝑛2(𝑡,𝑚) = 1 −𝑚2 𝑠𝑛2(𝑡,𝑚) 

• 𝑙𝑖𝑚
𝑚→0

𝑠𝑛(𝑡,𝑚) = 𝑠𝑖𝑛𝑡 = 𝑠𝑛(𝑡, 0) 

• 𝑙𝑖𝑚
𝑚→0

𝑐𝑛(𝑡,𝑚) = 𝑐𝑜𝑠𝑡 = 𝑐𝑛(𝑡, 0) 

• 𝑙𝑖𝑚
𝑚→0

𝑑𝑛(𝑡,𝑚) = 1 = 𝑑𝑛(𝑡, 0) 

• 𝑙𝑖𝑚
𝑚→1

𝑠𝑛(𝑡,𝑚) = 𝑡𝑎𝑛ℎ𝑡 = 𝑠𝑛(𝑡, 1) 

• 𝑙𝑖𝑚
𝑚→1

𝑐𝑛(𝑡,𝑚) = 𝑐𝑜𝑠ℎ𝑡 = 𝑐𝑛(𝑡, 1) 

• 𝑙𝑖𝑚
𝑚→1

𝑑𝑛(𝑡,𝑚) = 𝑠𝑒𝑐ℎ𝑡 = 𝑑𝑛(𝑡, 1) 

• 
𝑑

𝑑𝑡
𝑠𝑛(𝑡,𝑚) = 𝑐𝑛(𝑡,𝑚)𝑑𝑛(𝑡,𝑚) 

• 
𝑑

𝑑𝑡
𝑐𝑛(𝑡,𝑚) = −𝑠𝑛(𝑡,𝑚)𝑑𝑛(𝑡, 𝑚) 

• 
𝑑

𝑑𝑡
𝑑𝑛(𝑡,𝑚) = −𝑚2𝑠𝑛(𝑡,𝑚)𝑐𝑛(𝑡,𝑚) 

 

III. SOLVE CUBIC FOR BOUNDEDNESS AND TIME 

PERIOD 

 

Case A : For Cubic 𝝂 ≠ 𝟎 (Special case (𝝆 = 𝟏 = 𝝂)) 

From (1.1) the undamped (𝛿 = 0) and unforced (𝛾 =

0) duffing equation is  

 

�̈� + 𝜌𝑥 + 𝜈𝑥3 = 0  

⇒ �̇�(�̈� + 𝜌𝑥 + 𝜈𝑥3) = 0  

⇒
𝑑

𝑑𝑡
[
1

2
(�̇�)2 +

1

2
𝜌𝑥2 +

1

4
𝜈𝑥4] = 0 

⇒
1

2
(�̇�)2 +

1

2
𝜌𝑥2 +

1

4
𝜈𝑥4 = 𝐻    (3.1) 

 

is called invariant of motion and where H is called the 

Hamiltonian Operator. where H is to be determined 

by putting the initial conditions 𝑥(0) = 𝑥0  and 

�̇�(0) = 𝑥0̇  Here since 𝜌  and 𝜈  are positive then the 

solution of (3.1) is bounded. 

 

If |𝑥| ≤ √
2𝐻

𝜌
and |�̇�| ≤ √2𝐻 then the Hamiltonian H 

is positive. 

 

Now Substituting 𝜌 = 1 = 𝜈 in (2.2) and (3.1),  

we have �̈� + 𝑥3 + 𝑥 = 0 and 
1

2
(�̈�)2 +

1

2
𝑥2 +

1

4
𝑥4 = 𝐻 

which transforms to Hamiltonian system of first order 

differential equations. (see [4], [10]) 

 

 �̇� = 𝑦        (3.2) 

�̇� = −𝑥 − 𝑥3        (3.3) 

and 
1

2
(�̇�)2 +

1

2
𝑥2 +

1

4
𝑥4 = 𝐻     (3.4) 

 

Now we have to find out the time period t by solving 

(3.4) 

(�̇�)2 = 2𝐻 − 𝑥2 −
1

2
𝑥4 

⇒ (
𝑑𝑥

𝑑𝑡
)
2

= 2𝐻 − 𝑥2 −
1

2
𝑥4 

⇒
𝑑𝑥

𝑑𝑡
= √2𝐻 − 𝑥2 −

1

2
𝑥4 
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⇒ ∫𝑑𝑡 = ∫
𝑑𝑥

√2𝐻 − 𝑥2 −
1

2
𝑥4

 

⇒ 𝑡 = ∫
𝑑𝑥

√2𝐻−𝑥2−
1

2
𝑥4

 is the Time Period. 

From (3.4) 

1

2
𝑦2 +

1

2
𝑥2 +

1

4
𝑥4 = 𝐻(𝑥, 𝑦) 

⇒
𝜕𝐻

𝜕𝑥
= 𝑥 + 𝑥2 = −�̇� = −�̈� 

⇒
𝜕𝐻

𝜕𝑦
= 𝑦 = �̇� 

The Hamiltonian system of equations (see [3]) are 

�̇� = 
𝜕𝐻

𝜕𝑦
 

�̇� = −
𝜕𝐻

𝜕𝑥
 

 

Case B : Solve Initial Value Problem (IVP) for Cubic  

 with different Special Cases 

 

Solve the initial value problem �̈�(𝑡) + 𝜌𝑥(𝑡) +

𝜈𝑥3(𝑡) = 0, 𝑥(0) = 𝑥0𝑎𝑛𝑑�̇�(0) =  �̇�0  which is a 

second order non-linear differential equation by using 

Jacobi elliptic function. 

 

Solution :  

Setting 𝑥(𝑡) = 𝑐1𝑐𝑛(𝜔𝑡 + 𝑐2, 𝑚) (3.5) 

satisfies the equation (2.2). 

Now 𝜔 and m are to be determined in terms of 𝜌 and 

𝜈  and 𝑐1, 𝑐2  are to be determined from initial 

conditions 𝑥(0) = 𝑥0𝑎𝑛𝑑�̇�(0) =  �̇�0  

Now �̈�(𝑡) + 𝜔2(1 − 2𝑚2)𝑥(𝑡) +
2𝑚2𝜔2

𝑐1
2 𝑥3(𝑡)0, 

𝑥(0) = 𝑥0𝑎𝑛𝑑�̇�(0) =  �̇�0    (3.6) 

where 𝑐1, 𝑐2 are constants. 

Now, comparing (2.2) and (3.6), we get 

𝜌 = 𝜔2(1 − 2𝑚2)𝑎𝑛𝑑𝜈 = 
2𝑚2𝜔2

𝑐1
2  

⇒ 𝜌 = 𝜔2 − 2𝑚2𝜔2𝑎𝑛𝑑𝜈𝑐1
2 = 2𝑚2𝜔2 

 

⇒𝜔2 = 𝜌 + 𝜈𝑐1
2 

⇒ 𝜔 = √𝜌 + 𝜈𝑐1
2     (3.7) 

and 𝜈𝑐1
2 = 2𝑚2𝜔2 

⇒ 𝜈𝑐1
2 = 2𝑚2(𝜌 + 𝜈𝑐1

2)(∵ 𝜔2 = 𝜌 + 𝜈𝑐1
2) 

⇒ 𝑚2 =
𝜈𝑐1

2

2(𝜌 + 𝜈𝑐1
2)

 

⇒ 𝑚 = √
𝜈𝑐1

2

2(𝜌+𝜈𝑐1
2)

        (3.8) 

 

Now, substituting the values of (3.7) and (3.8) in (3.5), 

we get 𝑥(𝑡) = 𝑐1𝑐𝑛 ((√𝜌 + 𝑐1
2𝜈) 𝑡 + 𝑐2, √

𝑐1
2𝜈

2(𝜌+𝑐1
2𝜈)
) 

(3.9) 

⇒ 𝑥(0) = 𝑐1𝑐𝑛((√𝜌 + 𝑐1
2𝜈) × 0

+ 𝑐2, √
𝑐1
2𝜈

2(𝜌 + 𝑐1
2𝜈)

) 

=  𝑐1𝑐𝑛(𝑐2,𝑚) 

= 𝑥0 

and �̇�(0) = 𝑐1 [
−𝑠𝑛 ((√𝜌 + 𝑐1

2𝜈) × 0 + 𝑐2,𝑚)

𝑑𝑛 ((√𝜌 + 𝑐1
2𝜈) × 0 + 𝑐2,𝑚)

]√𝜌 + 𝑐1
2𝜈 

= −√𝜌 + 𝑐1
2𝜈𝑐1𝑠𝑛(𝑐2,𝑚)𝑑𝑛(𝑐2,𝑚) 

=  �̇�0 

 

Now I have to discuss about the solution by different 

cases to the given problem in the form of 𝑥(𝑡) =

𝑥0𝜑(𝜔0𝑡,𝑚0) in terms of Jacobi elliptic functions nc, 

dc and cd, nd having positive frequency 𝜔0  and 

modulus 𝑚0 on the interval [0, 1]. 

 

Case i :�̇�(0) = 0 

 

Then –√𝜌 + 𝑐1
2𝜈𝑐1𝑠𝑛(𝑐2,𝑚)𝑑𝑛(𝑐2, 𝑚) = 0 

⇒𝑐1 = 0 = 𝑥0    (3.10) 

∴ 𝑐2 = 0     (3.11) 

 

Now the solution to the initial value problem  

 

�̈�(𝑡) + 𝜌𝑥(𝑡) + 𝜈𝑥3(𝑡) = 0, 𝑥(0) = 𝑥0𝑎𝑛𝑑�̇�(0) = 0 

(3.12) 

is 

http://www.ijsrst.com/
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𝑥(𝑡) = 𝑥0𝑐𝑛 (√𝜌 + 𝜈𝑥0
2𝑡, √

𝜈𝑥0
2

2(𝜌+𝜈𝑥0
2)
) , 𝜌 + 𝜈𝑥0

2 ≠ 0 

   (3.13) 

 

Here the required solution is bounded. 

 

Substituting 𝜌 = 1 = 𝜈  in (3.12), we get the time 

period. 

 

Case ii : 𝑥(0) = 1, �̇�(0) = 0, 𝜌 = 𝜈 = 2 

Now, equation (2.2) becomes  

�̈� + 2𝑥 + 2𝑥3 = 0, 𝑥(0) = 1𝑎𝑛𝑑�̇�(0) = 0 

which is a initial value problem, whether it is 

bounded or not and find its period. 

 

Solution :  

Now, 𝑥(𝑡) = 1 × 𝑐𝑛 (√2 + 2 × 12𝑡, √
2×12

2(2+2×12)
) 

⇒ 𝑥(𝑡) = 𝑐𝑛 (2𝑡,
1

2
) positive root can be taken.  

The solution is bounded since 𝜈 = 𝜌 = 2 and 𝜔0 = 2 

which is positive. 

Its period is 
4𝐾(

1

2
)

2
 from Jacobi function 𝑐𝑛. 

Let 𝜗 = 𝜌 + 𝜈𝑥0
2 = 𝜔2     (3.14) 

and 𝜇 = 
𝜈𝑥0

2

2(𝜌+𝜈𝑥0
2)
= 𝑚2     (3.15) 

Then (3.5) becomes 𝑥(𝑡) = 𝑥0𝑐𝑛(√𝜗𝑡, √𝜇) (3.16) 

Case a : 𝜗 < 0 or 𝜇 < 0 

Now, (3.16) becomes (see [2]) 

𝑥(𝑡) = 𝑥0𝑛𝑐(√−𝜗𝑡, √1 − 𝜇), 𝜗 < 0  

and 0 < 𝜇 ≤ 1    (3.17) 

Case b : 0 < 𝜇 < 1, 𝜌 = 𝜈 = −2, 𝑥(0) = 1, �̇�(0) = 0  

from (3.17) 

Now, equation (2.2) becomes  

�̈� − 2𝑥 − 2𝑥3 = 0, 𝑥(0) = 1𝑎𝑛𝑑�̇�(0) = 0 

which is a initial value problem, whether it is 

bounded or not and find its period. 

Solution :  

Now, 𝜗 = (−2) + (−2)12 and 𝜇 = 
(−2)12

2(−2+(−2)12)
 

= −4 and =
1

4
 

∴ 𝑥(𝑡) = 𝑛𝑐(√—4𝑡, √1 −
1

4
 

= 𝑛𝑐 (2𝑡,
√3

2
) 

Again, 𝑥(𝑡) = 1 ×

𝑐𝑛 (√(−2) + (−2)12𝑡, √
(−2)12

2((−2)+(−2)12)
) =

𝑐𝑛 (2√−1𝑡,
1

2
) 

∴ 𝑥(𝑡) = 𝑛𝑐 (2𝑡,
√3

2
) = 𝑐𝑛 (2√−1𝑡,

1

2
) 

The solution is unbounded since 𝜈 = 𝜌 = −2 and  

𝜔0 = 2√−1 which is negative. 

Its period is 
4𝐾(

√3

2
)

2
 from Jacobi function 𝑛𝑐.  

Case c : 𝜇 = 1, 𝜌 = 1, 𝜈 = −2, 𝑥(0) = 1, �̇�(0) = 0  

from (3.17) 

Now, equation (2.2) becomes  

�̈� + 𝑥 − 2𝑥3 = 0, 𝑥(0) = 1𝑎𝑛𝑑�̇�(0) = 0 

which is a initial value problem, whether it is 

bounded or not and find its period. 

Solution :  

The solution is unbounded since 𝜈 = −2, 𝜌 = 1  and 

𝜔0 = √−1 which is negative. 

Its period is 4𝐾(0) from Jacobi function 𝑛𝑐.  

Case d : 𝜗 < 0𝑎𝑛𝑑𝜇 > 1 

Now, (3.16) becomes (see [2]) 

𝑥(𝑡) = 𝑥0𝑑𝑐 (√−𝜗𝜇𝑡,√1 −
1

𝜇
) , 𝜗 < 0 and 𝜇 > 1  

 (3.18) 

Case e : 𝜗 < 0, 𝜇 > 1, 𝜌 = 3, 𝜈 = −1, 𝑥(0) = 2, �̇�(0) =

0 from (3.18)  

Now, equation (2.2) becomes  

�̈� + 3𝑥 − 𝑥3 = 0, 𝑥(0) = 2𝑎𝑛𝑑�̇�(0) = 0 

which is an initial value problem, whether it is 

bounded or not and find its period. 

Solution :  

The solution is unbounded since 𝜌 = 3, 𝜈 = −1 and 

𝜔0 = √2 which is positive. 

Its period is 2 ×
4𝐾(

√2

2
)

√2
 from Jacobi function 𝑑𝑐. 

Case f : 𝜗 > 0 and 𝜇 < 0 
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Now, (3.16) becomes (see [9]) 

𝑥(𝑡) = 𝑥0𝑐𝑑 (√𝜗(1 − 𝜇)𝑡, √
−𝜇

√1−𝜇
) , 𝜗 > 0  and 𝜇 < 0 

   (3.19) 

Case g : 𝜗 > 0, 𝜇 < 0  , 𝜌 = 2, 𝜈 = −1, 𝑥(0) =

1, �̇�(0) = 0 from (3.19)  

Now, equation (2.2) becomes  

�̈� + 2𝑥 − 𝑥3 = 0, 𝑥(0) = 1𝑎𝑛𝑑�̇�(0) = 0 

which is a initial value problem, whether it is 

bounded or not and find its period. 

Solution :  

The solution is unbounded since 𝜌 = 2, 𝜈 = −1 and 

𝜔0 = √
3

2
 which is positive. 

Its period is 
4𝐾(

√3

3
)

√
3

2

 from Jacobi function 𝑐𝑑. 

Case h : 𝜗 < 0 and 𝜇 < 0 

Now, (3.16) becomes (see [9]) 

𝑥(𝑡) = 𝑥0𝑛𝑑 (√−𝜗(1 − 𝜇)𝑡,
1

√1−𝜇
) , 𝜗 < 0  and 𝜇 < 0 

    (3.20) 

Case i : 𝜗 < 0 , 𝜇 < 0  , 𝜌 = −2, 𝜈 = 13, 𝑥(0) =

10−2, �̇�(0) = 0 from (3.20) 

Now, equation (2.2) becomes 

�̈� − 2𝑥 + 13𝑥3 = 0, 𝑥(0) = 10−2𝑎𝑛𝑑�̇�(0) = 0 

which is a initial value problem, whether it is 

bounded or not and find its period. 

Solution :  

The solution is unbounded since 𝜌 = −2, 𝜈 = 13 and 

𝜔0 = 1.4139 which is positive. 

Its period is 0.01 ×
4𝐾(0.99985)

1.4139
 from Jacobi function 𝑛𝑑. 

  

Case C : Solve Initial Value Problem for Linear 𝝂 = 𝟎 

Equation (2.2) becomes �̈�(𝑡) + 𝜌𝑥(𝑡) = 0 which is a 

second order linear differential equation. 

Now, solve the initial value problem �̈�(𝑡) + 𝜌𝑥(𝑡) =

0, 𝑥(0) = 𝑥0, �̇�(0) = �̇�0. 

Solution : The auxiliary equation of �̈�(𝑡) + 𝜌𝑥(𝑡) = 0 is 

 𝑀2 + 𝜌 = 0 

⇒ 𝑀 = 0 ± 𝑖√𝜌 

∴ 𝑥(𝑡) = 𝑒0×𝑡(𝑐1𝑐𝑜𝑠√𝜌𝑡 + 𝑐2𝑠𝑖𝑛√𝜌𝑡) 

 = (𝑐1𝑐𝑜𝑠√𝜌𝑡 + 𝑐2𝑠𝑖𝑛√𝜌𝑡), 

𝑐1, 𝑐2 are constants. 

⇒ 𝑥(0) = (𝑐1𝑐𝑜𝑠√𝜌 × 0 + 𝑐2𝑠𝑖𝑛√𝜌 × 0) 

⇒ 𝑥0 = 𝑐1 

Now �̇�(𝑡) = (−𝑐1𝑠𝑖𝑛√𝜌𝑡 + 𝑐2𝑐𝑜𝑠√𝜌𝑡) 

⇒ �̇�(0) = 0 

⇒ �̇�0 = 𝑐2 = 0 

∴ 𝑥(𝑡) = 𝑥0𝑐𝑜𝑠√𝜌𝑡   (3.21) 

is the required particular solution which is bounded 

and its period is to be determined by suitable value of 

𝜌. 

 

IV. GRAPHS OF VELOCITY AND ACCELERATION 

OF UNDAMPED AND UNDRIVEN DUFFING 

EQUATION USING 

 

MATLAB The concept of Duffing equation was named after 

Georg Duffing (1861 – 1944) which is a non -linear second 

order differential equation in the case of damped (𝛿 ≠ 0) and 

driven (𝛾 ≠ 0)  equation.  

The duffing equation is of the form   

�̈� + 𝛿�̇� + (𝜈𝑥3 ± 𝜌𝑥) = 𝛾 cos(𝜔𝑡)             (1.1) 

where 𝑥(𝑡) = displacement at time 𝑡 

        �̇� = 
𝑑

𝑑𝑡
(𝑥(𝑡)) = velocity 

and �̈� = 
𝑑2

𝑑𝑡2
(𝑥(𝑡)) = acceleration. 

The numbers 𝛿, 𝜌, 𝜈, 𝛾, 𝜔 are parameters.  

Note that the motion of a damped (𝛿 ≠ 0)  and unforced / 

undriven (𝛾 = 0)oscillator has more complex  

potential than Simple harmonic motion. 

 

 

C. Parameters 

The parameters of equation (1.1) are  

• 𝛿   depends on the amount of damping 

• 𝜌   depends on the linear case 

• 𝜈   depends on the non-linear case  

• 𝛾   is the amplitude of the periodic driving force  

• 𝜔   is the angular frequency of the periodic driving    

force 

 

B.  Equilibrium Points 

The force provided for the non-linear case is   

      𝜈𝑥3 + 𝜌𝑥                                       (1.2) 
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Case – I 

If 𝜌 > 0 and 𝜈 > 0  then (1.2) is called a hardening   

spring and the equilibrium point is at 𝑥 = 0 

Case – II  

If 𝜌 > 0 and 𝜈 < 0  then (1.2) is called a softening spring  

and the equilibrium points are at 𝑥 = ±√
𝜌

𝜈
 

Case - III 

If  𝜌 < 0 and 𝜈 > 0 then (1.2) is also called a softening   

spring and the equilibrium points are at 𝑥 = ±√−
𝜌

𝜈
  

C.  Methods of Solution 

Many approximate solutions for the duffing equation are  

• By Fourier series method. 

• By Frobenius method which yields a complex solution. 

• By Euler’s method and Runge-Kutta methods in 

numerical analysis. 

• By Homotopy analysis method which yields approximate 

solutions of the duffing equation. 

• By Jacobi Elliptic functions to obtain the exact solutions 

of the undamped (𝛿  = 0) and undriven (𝛾 = 0)  duffing 

equation. 

 

V. UNDAMPED (𝜹 = 𝟎) AND UNFORCED (𝜸 = 𝟎) 

DUFFING EQUATION BY JACOBI ELLIPTIC 

FUNCTIONS 

 

The duffing equation is  

 

�̈� + 𝛿�̇� + (𝜈𝑥3 ± 𝜌𝑥) = 𝛾cos(𝜔𝑡)              (2.1) 

 

In this paper, my aim is to solve for boundedness and its  time 

period of the duffing equation (undamped ( 𝛿 = 0)  and 

unforced / undriven (𝛾 = 0)) by Jacobi elliptic functions cn 

and nc, dn and nd, cd and  dc, sn. (see [2, 5-8, 11]) 

Also I expressed the identities, the properties and graphs 

using MATLAB program of Jacobi elliptic functions. (see [1]) 

By taking the plus sign in (2.1) becomes   

�̈� + 𝜈𝑥3 + 𝜌𝑥 = 0        (2.2) 

In this paper there are three special cases to solve for 

boundedness and time period. These are   

(i)  For cubic case (𝜈 ≠ 0) (special case (𝜈 = 1 = 𝜌))   

  without initial conditions 

(ii) For cubic case (𝜈 ≠ 0) with initial conditions 

(ii) For linear case (𝜈 = 0) with initial conditions 

 

A.  Properties of Jacobi Elliptic Functions 

(i) Jacobi elliptic functions are 𝑠𝑛(𝑡,  𝑚) =

𝑠𝑖𝑛𝜃, 𝑐𝑛(𝑡,  𝑚)𝑐𝑜𝑠𝜃,   𝑑𝑛(𝑡,  𝑚) =  √1 − 𝑚2 sin2 𝜃  

where  𝑚 ∈ (0,  1) is called elliptic modulus,   

𝑡 =  ∫
𝑑𝜙

√1−𝑚2 sin2𝜙

𝜃

0
 is the time period  

and  𝜃 = 𝑎𝑚(𝑡,  𝑚) is called Jacobi amplitude. 

(ii) Jacobi elliptic functions are derivable 

(iii) Graphs using MATLAB (see [1]) 

 

Program :  

>> m = 0.5; 

>> t = -5 : 0.1 : 5; 

>> [s, c, d] = ellipj(t, m); 

 

>> plot(t, s, '*', t, c, '^', t,   

 d, '.') 

>> axis([-5 5 -1.1 1.1]) 

>> legend('sn', 'cn', 'dn') 

>> xlabel('Time (t)') 

>> ylabel('Elliptic Modulus (m)') 

>> title('Graph of Jacobi   

 Elliptic Functions') 

 

Graph : 

 

 
 

(iv) sn and cn are periodic functions 

period of sn = 4K(
1

4
) = 4K(m),  m = 

1

4
 

period of cn = 4K(
1

4
) = 4K(m),  m = 

1

4
 

where K = K(m) = K(
1

4
) ≈ 1.5962422 

 

B.  Identities of Jacobi Elliptic Functions 

• 𝑠𝑛2(𝑡,𝑚) + 𝑐𝑛2(𝑡,𝑚) = 1 

• 𝑑𝑛2(𝑡,𝑚) = 1 −𝑚2 sn2(𝑡,𝑚) 

• lim
𝑚→0

𝑠𝑛(𝑡,𝑚) = 𝑠𝑖𝑛𝑡 = 𝑠𝑛(𝑡, 0) 
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• lim
𝑚→0

𝑐𝑛(𝑡,𝑚) = 𝑐𝑜𝑠𝑡 = 𝑐𝑛(𝑡, 0) 

• lim
𝑚→0

𝑑𝑛(𝑡,𝑚) = 1 = 𝑑𝑛(𝑡, 0) 

• lim
𝑚→1

𝑠𝑛(𝑡,𝑚) = 𝑡𝑎𝑛ℎ𝑡 = 𝑠𝑛(𝑡, 1) 

• lim
𝑚→1

𝑐𝑛(𝑡,𝑚) = 𝑐𝑜𝑠ℎ𝑡 = 𝑐𝑛(𝑡, 1) 

• lim
𝑚→1

𝑑𝑛(𝑡,𝑚) = 𝑠𝑒𝑐ℎ𝑡 = 𝑑𝑛(𝑡, 1) 

• 
𝑑

𝑑𝑡
𝑠𝑛(𝑡,𝑚) = 𝑐𝑛(𝑡,𝑚)𝑑𝑛(𝑡,𝑚) 

• 
𝑑

𝑑𝑡
𝑐𝑛(𝑡,𝑚) = −𝑠𝑛(𝑡,𝑚)𝑑𝑛(𝑡,𝑚) 

• 
𝑑

𝑑𝑡
𝑑𝑛(𝑡,𝑚) = −𝑚2𝑠𝑛(𝑡,𝑚)𝑐𝑛(𝑡,𝑚) 

 

VI. SOLVE CUBIC FOR BOUNDEDNESS AND  

TIME PERIOD 

 

Case A : For Cubic 𝝂 ≠ 𝟎 (Special case (𝝆 = 𝟏 = 𝝂)) 

From (1.1) the undamped (𝛿 = 0 ) and unforced (𝛾 = 0 ) 

duffing equation is  

�̈� + 𝜌𝑥 + 𝜈𝑥3 = 0  

⇒ �̇�(�̈� + 𝜌𝑥 + 𝜈𝑥3) = 0  

⇒
𝑑

𝑑𝑡
[
1

2
(�̇�)2 +

1

2
𝜌𝑥2 +

1

4
𝜈𝑥4] = 0 

⇒
1

2
(�̇�)2 +

1

2
𝜌𝑥2 +

1

4
𝜈𝑥4 = 𝐻        (3.1) 

is called invariant of motion and where H is called the 

Hamiltonian Operator. where H is to be determined by putting 

the initial conditions 𝑥(0) = 𝑥0  and �̇�(0) = 𝑥0̇  Here since 𝜌  

and 𝜈 are positive then the solution of (3.1) is bounded. 

 

If |𝑥| ≤ √
2𝐻

𝜌
  and |�̇�| ≤ √2𝐻   then the Hamiltonian H is 

positive. 

 

Now Substituting 𝜌 = 1 = 𝜈 in (2.2) and (3.1),  

we have �̈� + 𝑥3 + 𝑥 = 0 and  
1

2
(�̈�)2 +

1

2
𝑥2 +

1

4
𝑥4 = 𝐻 

which transforms to Hamiltonian system of first order 

differential equations. (see [4], [10]) 

    �̇� = 𝑦         (3.2) 

�̇� = −𝑥 − 𝑥3                       (3.3) 

and 
1

2
(�̇�)2 +

1

2
𝑥2 +

1

4
𝑥4 = 𝐻       (3.4) 

Now we have to find out the time period t by solving (3.4) 

(�̇�)2 = 2𝐻 − 𝑥2 −
1

2
𝑥4 

⇒ (
𝑑𝑥

𝑑𝑡
)
2

= 2𝐻 − 𝑥2 −
1

2
𝑥4 

⇒
𝑑𝑥

𝑑𝑡
= √2𝐻 − 𝑥2 −

1

2
𝑥4 

⇒ ∫𝑑𝑡 = ∫
𝑑𝑥

√2𝐻 − 𝑥2 −
1

2
𝑥4

 

⇒ 𝑡 = ∫
𝑑𝑥

√2𝐻−𝑥2−
1

2
𝑥4

  is the Time Period. 

From (3.4) 

1

2
𝑦2 +

1

2
𝑥2 +

1

4
𝑥4 = 𝐻(𝑥, 𝑦) 

⇒
𝜕𝐻

𝜕𝑥
= 𝑥 + 𝑥2 = −�̇� = −�̈� 

⇒
𝜕𝐻

𝜕𝑦
= 𝑦 = �̇� 

The Hamiltonian system of equations (see [3]) are 

�̇� = 
𝜕𝐻

𝜕𝑦
 

�̇� = −
𝜕𝐻

𝜕𝑥
 

 

Case B :  Solve Initial Value Problem (IVP) for Cubic   

      with different Special Cases 

Solve the initial value problem  �̈�(𝑡) + 𝜌𝑥(𝑡) + 𝜈𝑥3(𝑡) = 0,

𝑥(0) = 𝑥0𝑎𝑛𝑑�̇�(0) =  �̇�0   which is a second  order non-

linear differential equation by using Jacobi elliptic function. 

Solution :  

Setting  𝑥(𝑡) = 𝑐1𝑐𝑛(𝜔𝑡 + 𝑐2, 𝑚)                (3.5) 

satisfies the equation (2.2). 

Now 𝜔 and m are to be determined in terms of 𝜌 and 𝜈 and 

𝑐1, 𝑐2  are to be determined from initial conditions 𝑥(0) =

𝑥0𝑎𝑛𝑑�̇�(0) =  �̇�0   

Now  �̈�(𝑡) + 𝜔2(1 − 2𝑚2)𝑥(𝑡) +
2𝑚2𝜔2

𝑐1
2 𝑥3(𝑡)0, 

𝑥(0) = 𝑥0𝑎𝑛𝑑�̇�(0) =  �̇�0       (3.6) 

where 𝑐1, 𝑐2 are constants. 

Now, comparing (2.2) and (3.6), we get 

𝜌 = 𝜔2(1 − 2𝑚2)𝑎𝑛𝑑𝜈 = 
2𝑚2𝜔2

𝑐1
2  

⇒ 𝜌 = 𝜔2 − 2𝑚2𝜔2𝑎𝑛𝑑𝜈𝑐1
2 = 2𝑚2𝜔2 

⇒𝜔2 = 𝜌 + 𝜈𝑐1
2 

⇒ 𝜔 = √𝜌 + 𝜈𝑐1
2        (3.7) 

and  𝜈𝑐1
2 = 2𝑚2𝜔2 

⇒ 𝜈𝑐1
2 = 2𝑚2(𝜌 + 𝜈𝑐1

2)(∵ 𝜔2 = 𝜌 + 𝜈𝑐1
2) 

⇒ 𝑚2 =
𝜈𝑐1

2

2(𝜌 + 𝜈𝑐1
2)

 

⇒ 𝑚 = √
𝜈𝑐1

2

2(𝜌+𝜈𝑐1
2)

             (3.8) 

Now, substituting the values of (3.7) and (3.8) in (3.5), we get  

𝑥(𝑡) = 𝑐1𝑐𝑛 ((√𝜌 + 𝑐1
2𝜈) 𝑡 + 𝑐2, √

𝑐1
2𝜈

2(𝜌+𝑐1
2𝜈)
)  (3.9) 

⇒ 𝑥(0) = 𝑐1𝑐𝑛((√𝜌 + 𝑐1
2𝜈) × 0 + 𝑐2, √

𝑐1
2𝜈

2(𝜌 + 𝑐1
2𝜈)

) 

=  𝑐1𝑐𝑛(𝑐2, 𝑚) 

= 𝑥0 
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and �̇�(0) = 𝑐1 [
−𝑠𝑛 ((√𝜌 + 𝑐1

2𝜈) × 0 + 𝑐2,𝑚)

𝑑𝑛 ((√𝜌 + 𝑐1
2𝜈) × 0 + 𝑐2, 𝑚)

]√𝜌 + 𝑐1
2𝜈 

= −√𝜌 + 𝑐1
2𝜈𝑐1𝑠𝑛(𝑐2, 𝑚)𝑑𝑛(𝑐2, 𝑚) 

=  �̇�0 

Now I have to discuss about the solution by different cases to 

the given problem in the form of 𝑥(𝑡) = 𝑥0𝜑(𝜔0𝑡, 𝑚0) in 

terms of Jacobi elliptic functions nc, dc and cd, nd having 

positive frequency 𝜔0 and modulus 𝑚0 on the interval [0, 1]. 

Case i :�̇�(0) = 0 

Then –√𝜌 + 𝑐1
2𝜈𝑐1𝑠𝑛(𝑐2, 𝑚)𝑑𝑛(𝑐2, 𝑚) = 0 

⇒ 𝑐1 = 0 = 𝑥0   (3.10) 

∴ 𝑐2 = 0    (3.11) 

Now the solution to the initial value problem  

�̈�(𝑡) + 𝜌𝑥(𝑡) + 𝜈𝑥3(𝑡) = 0, 𝑥(0) = 𝑥0𝑎𝑛𝑑�̇�(0) = 0 

               (3.12) 

is 

𝑥(𝑡) = 𝑥0𝑐𝑛 (√𝜌 + 𝜈𝑥0
2𝑡, √

𝜈𝑥0
2

2(𝜌+𝜈𝑥0
2)
) , 𝜌 + 𝜈𝑥0

2 ≠ 0  

                    (3.13) 

Here the required solution is bounded. 

Substituting 𝜌 = 1 = 𝜈 in (3.12), we get the time period. 

Case ii :  𝑥(0) = 1, �̇�(0) = 0, 𝜌 = 𝜈 = 2 

Now, equation (2.2) becomes  

�̈� + 2𝑥 + 2𝑥3 = 0, 𝑥(0) = 1𝑎𝑛𝑑�̇�(0) = 0 

which is a initial value problem, whether it is bounded or not 

and find its period. 

 

Solution :  

Now, 𝑥(𝑡) = 1 × 𝑐𝑛 (√2 + 2 × 12𝑡, √
2×12

2(2+2×12)
) 

⇒ 𝑥(𝑡) = 𝑐𝑛 (2𝑡,
1

2
) positive root can be taken.  

The solution is bounded since 𝜈 = 𝜌 = 2 and 𝜔0 = 2 which 

is positive. 

Its period is 
4𝐾(

1

2
)

2
 from Jacobi function 𝑐𝑛. 

Let  𝜗 = 𝜌 + 𝜈𝑥0
2 = 𝜔2         (3.14) 

and  𝜇 = 
𝜈𝑥0

2

2(𝜌+𝜈𝑥0
2)
= 𝑚2        (3.15) 

Then (3.5) becomes 𝑥(𝑡) = 𝑥0𝑐𝑛(√𝜗𝑡, √𝜇)    (3.16) 

Case  a :  𝜗 < 0 or 𝜇 < 0 

Now, (3.16) becomes (see [2]) 

𝑥(𝑡) = 𝑥0𝑛𝑐(√−𝜗𝑡, √1 − 𝜇), 𝜗 < 0  

and 0 < 𝜇 ≤ 1                              (3.17) 

Case b : 0 < 𝜇 < 1, 𝜌 = 𝜈 = −2, 𝑥(0) = 1, �̇�(0) = 0  

from (3.17) 

Now, equation (2.2) becomes  

�̈� − 2𝑥 − 2𝑥3 = 0, 𝑥(0) = 1𝑎𝑛𝑑�̇�(0) = 0 

which is a initial value problem, whether it is bounded or not 

and find its period. 

Solution :  

Now,  𝜗 = (−2) + (−2)12   and  𝜇 = 
(−2)12

2(−2+(−2)12)
 

= −4          and   = 
1

4
 

∴ 𝑥(𝑡) = 𝑛𝑐(√—4𝑡, √1 −
1

4
 

= 𝑛𝑐 (2𝑡,
√3

2
) 

Again, 𝑥(𝑡) = 1 × 𝑐𝑛 (√(−2) + (−2)12𝑡,

√
(−2)12

2((−2)+(−2)12)
) = 𝑐𝑛 (2√−1𝑡,

1

2
) 

∴ 𝑥(𝑡) = 𝑛𝑐 (2𝑡,
√3

2
) = 𝑐𝑛 (2√−1𝑡,

1

2
) 

 

The solution is unbounded since 𝜈 = 𝜌 = −2 and  

𝜔0 = 2√−1 which is negative. 

Its period is 
4𝐾(

√3

2
)

2
 from Jacobi function 𝑛𝑐.  

Case c :  𝜇 = 1, 𝜌 = 1, 𝜈 = −2, 𝑥(0) = 1, �̇�(0) = 0   

from (3.17) 

 

Now, equation (2.2) becomes  

�̈� + 𝑥 − 2𝑥3 = 0, 𝑥(0) = 1𝑎𝑛𝑑�̇�(0) = 0 

which is a initial value problem, whether it is bounded or not 

and find its period. 

 

Solution :  

The solution is unbounded since 𝜈 = −2, 𝜌 = 1  and 𝜔0 =

√−1 which is negative. 

Its period is 4𝐾(0) from Jacobi function 𝑛𝑐.  

Case d :  𝜗 < 0𝑎𝑛𝑑𝜇 > 1 

Now, (3.16) becomes (see [2]) 

𝑥(𝑡) = 𝑥0𝑑𝑐 (√−𝜗𝜇𝑡, √1 −
1

𝜇
) , 𝜗 < 0 and 𝜇 > 1   

                            (3.18) 

Case e :  𝜗 < 0, 𝜇 > 1, 𝜌 = 3, 𝜈 = −1, 𝑥(0) = 2, �̇�(0) =

0  from (3.18)  

 

Now, equation (2.2) becomes  

�̈� + 3𝑥 − 𝑥3 = 0, 𝑥(0) = 2𝑎𝑛𝑑�̇�(0) = 0 

which is an initial value problem, whether it is bounded or not 

and find its period. 

 

Solution :  

The solution is unbounded since 𝜌 = 3, 𝜈 = −1 and 𝜔0 =

√2 which is positive. 

Its period is 2 ×
4𝐾(

√2

2
)

√2
 from Jacobi function 𝑑𝑐. 
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Case  f  :  𝜗 > 0 and 𝜇 < 0 

Now, (3.16) becomes (see [9]) 

𝑥(𝑡) = 𝑥0𝑐𝑑 (√𝜗(1 − 𝜇)𝑡, √−𝜇

√1−𝜇
) , 𝜗 > 0  and 𝜇 < 0          

                    (3.19) 

Case g :  𝜗 > 0,  𝜇 < 0 , 𝜌 = 2, 𝜈 = −1, 𝑥(0) = 1, �̇�(0) =

0  from (3.19)  

Now, equation (2.2) becomes  

�̈� + 2𝑥 − 𝑥3 = 0, 𝑥(0) = 1𝑎𝑛𝑑�̇�(0) = 0 

which is a initial value problem, whether it is bounded or not 

and find its period. 

Solution :  

The solution is unbounded since 𝜌 = 2, 𝜈 = −1 and 𝜔0 =

√
3

2
 which is positive. 

Its period is 
4𝐾(

√3

3
)

√
3

2

 from Jacobi function 𝑐𝑑. 

Case h :  𝜗 < 0 and 𝜇 < 0 

Now, (3.16) becomes (see [9]) 

𝑥(𝑡) = 𝑥0𝑛𝑑 (√−𝜗(1 − 𝜇)𝑡,
1

√1−𝜇
) , 𝜗 < 0  and 𝜇 < 0          

                          (3.20) 

Case i : 𝜗 < 0 ,  𝜇 < 0  , 𝜌 = −2, 𝜈 = 13, 𝑥(0) = 10−2,

�̇�(0) = 0  from (3.20) 

Now, equation (2.2) becomes 

�̈� − 2𝑥 + 13𝑥3 = 0, 𝑥(0) = 10−2𝑎𝑛𝑑�̇�(0) = 0 

which is a initial value problem, whether it is bounded or not 

and find its period. 

 

Solution :  

The solution is unbounded since 𝜌 = −2, 𝜈 = 13 and 𝜔0 =

1.4139 which is positive. 

Its period is 0.01 ×
4𝐾(0.99985)

1.4139
 from Jacobi function 𝑛𝑑. 

  

Case  C : Solve Initial Value Problem for Linear 𝝂 = 𝟎 

Equation (2.2) becomes �̈�(𝑡) + 𝜌𝑥(𝑡) = 0 which is a second 

order linear differential equation. 

Now, solve the initial value problem  �̈�(𝑡) + 𝜌𝑥(𝑡) = 0,

𝑥(0) = 𝑥0, �̇�(0) = �̇�0. 

Solution : The auxiliary equation of  �̈�(𝑡) + 𝜌𝑥(𝑡) = 0  is 

   𝑀2 + 𝜌 = 0 

⇒ 𝑀 = 0 ± 𝑖√𝜌 

∴ 𝑥(𝑡) = 𝑒0×𝑡(𝑐1𝑐𝑜𝑠√𝜌𝑡 + 𝑐2𝑠𝑖𝑛√𝜌𝑡) 

   = (𝑐1𝑐𝑜𝑠√𝜌𝑡 + 𝑐2𝑠𝑖𝑛√𝜌𝑡), 

𝑐1, 𝑐2 are constants. 

⇒ 𝑥(0) = (𝑐1𝑐𝑜𝑠√𝜌 × 0 + 𝑐2𝑠𝑖𝑛√𝜌 × 0) 

⇒ 𝑥0 = 𝑐1 

Now �̇�(𝑡) = (−𝑐1𝑠𝑖𝑛√𝜌𝑡 + 𝑐2𝑐𝑜𝑠√𝜌𝑡) 

⇒ �̇�(0) = 0 

⇒ �̇�0 = 𝑐2 = 0 

∴ 𝑥(𝑡) = 𝑥0𝑐𝑜𝑠√𝜌𝑡           (3.21) 

is the required particular solution which is bounded and its 

period is to be determined by suitable value of 𝜌. 

IV. GRAPHS OF VELOCITY AND  

  ACCELERATION OF UNDAMPED  AND  

  UNDRIVEN DUFFING EQUATION USING  

  MATLAB 

Consider the duffing equation 

�̈� + 𝛿�̇� + (𝜈𝑥3 ± 𝜌𝑥) = 𝛾 cos(𝜔𝑡)(4.1) 

𝑤ℎ𝑒𝑟𝑒𝑥 = 𝑥(𝑡), 𝑡 = 𝑡𝑖𝑚𝑒𝑝𝑒𝑟𝑖𝑜𝑑    

Here 𝑥(𝑡) =displacement, �̇� =velocity, �̈� =acceleration 

The graphs of velocity and acceleration for duffing equation 

with suitable parameters 𝜌 = −2, 𝜈 = 13, 𝛾 = 0, 𝛿 =

0, 𝜔 = 1.4139  using MATLAB (see [1] ) program are 

shown below where X-axis indicates Time (t) in second and 

Y-axis indicates Velocity and Acceleration Graph with 

respect to Time (t). 

 

Program : 

M-file 

function xdiff = duffing_2(t,x) 

rho = -2; 

nu = 13; 

gamma = 0; 

delta = 0; 

omega = 1.4139; 

dxdt = [x(2); -delta*x(2)-rho*(x(1))-  

    nu*(x(1)^3)+gamma*cos(omega*t)]; 

xdiff = dxdt; 

return 

 

Command Window  

>> [t, x] = ode45(@duffing_2, [0 2],  

    [0 1]); 

>> plot(t, x, '+') 

>> title('DUFFING EQUATION : \rho = -2,  

 \nu = 13, \gamma = 0, \delta = 0,  

 \omega = 1.4139') 

>> xlabel('Time (t) in second') 

>> ylabel('Velocity and Acceleration  

 Graph with respect to Time (t)') 

>> legend('Velocity', 'Acceleration') 
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Graph : 

 

 
 

Consider the duffing equation 

�̈� + 𝛿�̇� + (𝜈𝑥3 ± 𝜌𝑥) = 𝛾 𝑐𝑜𝑠(𝜔𝑡)(4.1) 

𝑤ℎ𝑒𝑟𝑒𝑥 = 𝑥(𝑡), 𝑡 = 𝑡𝑖𝑚𝑒𝑝𝑒𝑟𝑖𝑜𝑑   

Here 𝑥(𝑡) = displacement, �̇� = velocity, �̈� =

acceleration 

 

The graphs of velocity and acceleration for duffing 

equation with suitable parameters 𝜌 = −2, 𝜈 =

13, 𝛾 = 0, 𝛿 = 0,𝜔 = 1.4139  using MATLAB (see 

[1] ) program are shown below where X-axis indicates 

Time (t) in second and Y-axis indicates Velocity and 

Acceleration Graph with respect to Time (t). 

 

Program : 

M-file 

function xdiff = duffing_2(t,x) 

rho = -2; 

nu = 13; 

gamma = 0; 

delta = 0; 

omega = 1.4139; 

dxdt = [x(2); -delta*x(2)-rho*(x(1))-  

 nu*(x(1)^3)+gamma*cos(omega*t)]; 

xdiff = dxdt; 

return 

 

Command Window  

 

>> [t, x] = ode45(@duffing_2, [0 2],  

 [0 1]); 

>> plot(t, x, '+') 

>> title('DUFFING EQUATION : \rho = -2,  

 \nu = 13, \gamma = 0, \delta = 0,  

 \omega = 1.4139') 

>> xlabel('Time (t) in second') 

>> ylabel('Velocity and Acceleration  

 Graph with respect to Time (t)') 

>> legend('Velocity', 'Acceleration') 

 

Graph : 
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